博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
如何连接(合并)数据框(内部,外部,左侧,右侧)
阅读量:3579 次
发布时间:2019-05-20

本文共 34927 字,大约阅读时间需要 116 分钟。

给定两个数据帧:

df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))df2 = data.frame(CustomerId = c(2, 4, 6), State = c(rep("Alabama", 2), rep("Ohio", 1)))df1#  CustomerId Product#           1 Toaster#           2 Toaster#           3 Toaster#           4   Radio#           5   Radio#           6   Radiodf2#  CustomerId   State#           2 Alabama#           4 Alabama#           6    Ohio

如何进行数据库样式(即 ? 也就是说,我如何获得:

  • df1df2df2
    仅返回右表中左表具有匹配键的行。
  • df1df2df2
    返回两个表中的所有行,左边的连接记录在右边的表中具有匹配的键。
  • df1df2 df2
    返回左侧表中的所有行,以及右侧表中具有匹配键的所有行。
  • df1df2
    返回右侧表中的所有行,以及左侧表中具有匹配键的所有行。

额外信用:

如何执行SQL样式选择语句?


#1楼

有一些很好的例子。 我会在这里偷几个:

合并方法

由于您的键名相同,因此进行内部联接的简短方法是merge():

merge(df1,df2)

可以使用“ all”关键字创建完整的内部联接(来自两个表的所有记录):

merge(df1,df2, all=TRUE)

df1和df2的左外部联接:

merge(df1,df2, all.x=TRUE)

df1和df2的右外部连接:

merge(df1,df2, all.y=TRUE)

您可以向下翻转“ em”,“拍击” em和“摩擦” em来获得您询问的其他两个外部联接:)

下标方法

使用下标方法在左侧带有df1的外部左连接为:

df1[,"State"]<-df2[df1[ ,"Product"], "State"]

外部联接的其他组合可以通过杂凑左外部联接下标示例来创建。 (是的,我知道这相当于说“我将其留给读者练习……”)


#2楼

通过使用merge功能及其可选参数:

内部联接 merge(df1, df2)将适用于这些示例,因为R通过通用变量名称自动联接框架,但是您很可能希望指定merge(df1, df2, by = "CustomerId")以确保您仅在您想要的字段上匹配。 如果匹配的变量在不同的数据帧中具有不同的名称,则也可以使用by.xby.y参数。

外部 merge(x = df1, y = df2, by = "CustomerId", all = TRUE) merge(x = df1, y = df2, by = "CustomerId", all = TRUE)

左外部: merge(x = df1, y = df2, by = "CustomerId", all.x = TRUE)

右外部: merge(x = df1, y = df2, by = "CustomerId", all.y = TRUE)

交叉 merge(x = df1, y = df2, by = NULL) merge(x = df1, y = df2, by = NULL)

与内部联接一样,您可能希望将“ CustomerId”显式传递给R作为匹配变量。
我认为几乎总是最好明确声明要合并的标识符。 如果输入data.frames发生意外更改,则更安全,以后更易于阅读。

您可以通过给多个列合并by一个载体,例如, by = c("CustomerId", "OrderId")

如果要合并的列名称不同,则可以指定,例如, by.x = "CustomerId_in_df1", by.y = "CustomerId_in_df2" ,其中CustomerId_in_df1是第一个数据框中的列名称,而CustomerId_in_df2是第二个数据框中的列名。 (如果您需要在多列上合并,这些也可以是向量。)


#3楼

我建议您检查一下 ,该可让您用SQL表示这些操作。

library(sqldf)## inner joindf3 <- sqldf("SELECT CustomerId, Product, State               FROM df1              JOIN df2 USING(CustomerID)")## left join (substitute 'right' for right join)df4 <- sqldf("SELECT CustomerId, Product, State               FROM df1              LEFT JOIN df2 USING(CustomerID)")

我发现SQL语法比R语法更简单,更自然(但这可能只反映了我的RDBMS偏见)。

有关联接的更多信息,请参见 。


#4楼

2014年的新功能:

特别是如果您还对一般的数据操作(包括排序,过滤,子集,汇总等) dplyr ,则一定要看一下dplyr ,它带有多种功能,旨在帮助您专门处理数据框架和某些其他数据库类型。 它甚至提供了相当复杂的SQL接口,甚至提供了将(大多数)SQL代码直接转换为R的功能。

dplyr软件包中与联接有关的四个功能是(引用):

  • inner_join(x, y, by = NULL, copy = FALSE, ...) :从x中返回所有行,其中y中有匹配值,并且返回x和y中的所有列
  • left_join(x, y, by = NULL, copy = FALSE, ...) :返回x的所有行以及x和y的所有列
  • semi_join(x, y, by = NULL, copy = FALSE, ...) :返回x中的所有行,其中y中有匹配的值,仅保留x中的列。
  • anti_join(x, y, by = NULL, copy = FALSE, ...) :从x返回所有行,其中y中没有匹配值,仅保留x中的列

这一切都非常详细。

可以通过select(df,"column")完成select(df,"column") 。 如果那还不足以满足您的SQL需求,那么可以使用sql()函数,您可以按原样输入SQL代码,并且它将执行您指定的操作,就像您一直在用R编写代码一样(有关更多信息, ,请参阅 )。 例如,如果正确应用,则sql("SELECT * FROM hflights")将选择“ hflights” dplyr表(“ tbl”)中的所有列。


#5楼

您也可以使用Hadley Wickham的超棒软件包进行联接。

library(dplyr)#make sure that CustomerId cols are both type numeric#they ARE not using the provided code in question and dplyr will complaindf1$CustomerId <- as.numeric(df1$CustomerId)df2$CustomerId <- as.numeric(df2$CustomerId)

突变联接:使用df2中的匹配项将列添加到df1中

#innerinner_join(df1, df2)#left outerleft_join(df1, df2)#right outerright_join(df1, df2)#alternate right outerleft_join(df2, df1)#full joinfull_join(df1, df2)

过滤联接:过滤出df1中的行,请勿修改列

semi_join(df1, df2) #keep only observations in df1 that match in df2.anti_join(df1, df2) #drops all observations in df1 that match in df2.

#6楼

dplyr自从0.4实现了所有这些连接,包括outer_join ,但是值得注意的是,在0.4之前的前几个版本中,它以前不提供outer_join ,因此存在很多非常糟糕的变通办法,用户代码在相当大的范围内浮动。过了一会儿(您仍然可以在那个时期在SO,Kaggle的答案和github中找到这样的代码。因此,此答案仍然有用。)

与联接有关的 :

  • 处理POSIXct类型,时区,重复项,不同因子级别。 更好的错误和警告。
  • 新的后缀参数可控制接收哪些后缀重复的变量名(#1296)

  • 突变联接,将新变量从另一个匹配的行添加到一个表。 过滤联接,根据联接是否与另一表中的观测值匹配来过滤其中一个表中的观测值。

  • 现在可以通过每个表中的不同变量进行left_join:df1%>%left_join(df2,c(“ var1” =“ var2”))

  • * _join()不再对列名重新排序(#324)

v0.1.3 (4/2014)

  • 具有inner_join,left_join,semi_join,anti_join
  • outside_join尚未实现,回退使用base :: merge()(或plyr :: join())
  • 尚未
  • dplyr目前没有的一个小功能合并是像Python pandas一样功能。

哈德利在该问题中的评论的变通办法:

  • right_join (x,y)在行方面与left_join(y,x)相同,只是列的顺序不同。 使用select(new_column_order)轻松解决
  • external_join基本上是union(left_join(x,y),right_join(x,y))-即保留两个数据帧中的所有行。

#7楼

在连接两个数据帧时,我分别惊奇地发现merge(..., all.x = TRUE, all.y = TRUE) ,每个数据帧各merge(..., all.x = TRUE, all.y = TRUE) 100万行,一个有2列,另一个有merge(..., all.x = TRUE, all.y = TRUE) dplyr::full_join() 。 这是dplyr v0.4

合并大约需要17秒,full_join需要大约65秒。

不过有些吃,因为我通常默认使用dplyr进行操作。


#8楼

  1. 使用merge功能,我们可以选择左侧表或右侧表的变量,就像我们都熟悉SQL中的select语句一样(例如:从.....选择a。* ...或Select b。*。)
  2. 我们必须添加额外的代码,这些代码将从新加入的表中获得子集。

    • SQL:- select a.* from df1 a inner join df2 b on a.CustomerId=b.CustomerId

    • R: merge(df1, df2, by.x = "CustomerId", by.y = "CustomerId")[,names(df1)]

同样的方式

  • SQL:- select b.* from df1 a inner join df2 b on a.CustomerId=b.CustomerId

  • R: merge(df1, df2, by.x = "CustomerId", by.y = "CustomerId")[,names(df2)]


#9楼

更新data.table方法以连接数据集。 有关每种连接类型,请参见以下示例。 有两种方法,一种是从[.data.table传递第二个data.table作为第一个参数传递给子集时,另一种方法是使用merge函数,该函数分派给fast data.table方法。

df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))df2 = data.frame(CustomerId = c(2L, 4L, 7L), State = c(rep("Alabama", 2), rep("Ohio", 1))) # one value changed to show full outer joinlibrary(data.table)dt1 = as.data.table(df1)dt2 = as.data.table(df2)setkey(dt1, CustomerId)setkey(dt2, CustomerId)# right outer join keyed data.tablesdt1[dt2]setkey(dt1, NULL)setkey(dt2, NULL)# right outer join unkeyed data.tables - use `on` argumentdt1[dt2, on = "CustomerId"]# left outer join - swap dt1 with dt2dt2[dt1, on = "CustomerId"]# inner join - use `nomatch` argumentdt1[dt2, nomatch=NULL, on = "CustomerId"]# anti join - use `!` operatordt1[!dt2, on = "CustomerId"]# inner join - using merge methodmerge(dt1, dt2, by = "CustomerId")# full outer joinmerge(dt1, dt2, by = "CustomerId", all = TRUE)# see ?merge.data.table arguments for other cases

在基准测试以下,基于R,sqldf,dplyr和data.table。

基准测试未加密/未索引的数据集。 基准测试是对50M-1行数据集执行的,联接列上有50M-2个公共值,因此可以测试每种情况(内部,左,右,满),联接仍然不容易执行。 这种连接类型很好地强调了连接算法。 时间从sqldf:0.4.11dplyr:0.7.8 data.table:1.12.0data.table:1.12.0

# innerUnit: seconds   expr       min        lq      mean    median        uq       max neval   base 111.66266 111.66266 111.66266 111.66266 111.66266 111.66266     1  sqldf 624.88388 624.88388 624.88388 624.88388 624.88388 624.88388     1  dplyr  51.91233  51.91233  51.91233  51.91233  51.91233  51.91233     1     DT  10.40552  10.40552  10.40552  10.40552  10.40552  10.40552     1# leftUnit: seconds   expr        min         lq       mean     median         uq        max    base 142.782030 142.782030 142.782030 142.782030 142.782030 142.782030       sqldf 613.917109 613.917109 613.917109 613.917109 613.917109 613.917109       dplyr  49.711912  49.711912  49.711912  49.711912  49.711912  49.711912          DT   9.674348   9.674348   9.674348   9.674348   9.674348   9.674348       # rightUnit: seconds   expr        min         lq       mean     median         uq        max   base 122.366301 122.366301 122.366301 122.366301 122.366301 122.366301       sqldf 611.119157 611.119157 611.119157 611.119157 611.119157 611.119157       dplyr  50.384841  50.384841  50.384841  50.384841  50.384841  50.384841          DT   9.899145   9.899145   9.899145   9.899145   9.899145   9.899145     # fullUnit: seconds  expr       min        lq      mean    median        uq       max neval  base 141.79464 141.79464 141.79464 141.79464 141.79464 141.79464     1 dplyr  94.66436  94.66436  94.66436  94.66436  94.66436  94.66436     1    DT  21.62573  21.62573  21.62573  21.62573  21.62573  21.62573     1

请注意,您还可以使用data.table执行其他类型的联接:

- -如果您想从另一个表到主表中查找值
- -如果要聚集正在联接的键,则不必实现所有联接结果
- -如果要按范围合并
- -如果您希望合并能够通过向前或向后滚动它们来匹配行之前/之后的值
- 平等 -如果您的加入条件不相等

复制代码:

library(microbenchmark)library(sqldf)library(dplyr)library(data.table)sapply(c("sqldf","dplyr","data.table"), packageVersion, simplify=FALSE)n = 5e7set.seed(108)df1 = data.frame(x=sample(n,n-1L), y1=rnorm(n-1L))df2 = data.frame(x=sample(n,n-1L), y2=rnorm(n-1L))dt1 = as.data.table(df1)dt2 = as.data.table(df2)mb = list()# inner joinmicrobenchmark(times = 1L,               base = merge(df1, df2, by = "x"),               sqldf = sqldf("SELECT * FROM df1 INNER JOIN df2 ON df1.x = df2.x"),               dplyr = inner_join(df1, df2, by = "x"),               DT = dt1[dt2, nomatch=NULL, on = "x"]) -> mb$inner# left outer joinmicrobenchmark(times = 1L,               base = merge(df1, df2, by = "x", all.x = TRUE),               sqldf = sqldf("SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.x = df2.x"),               dplyr = left_join(df1, df2, by = c("x"="x")),               DT = dt2[dt1, on = "x"]) -> mb$left# right outer joinmicrobenchmark(times = 1L,               base = merge(df1, df2, by = "x", all.y = TRUE),               sqldf = sqldf("SELECT * FROM df2 LEFT OUTER JOIN df1 ON df2.x = df1.x"),               dplyr = right_join(df1, df2, by = "x"),               DT = dt1[dt2, on = "x"]) -> mb$right# full outer joinmicrobenchmark(times = 1L,               base = merge(df1, df2, by = "x", all = TRUE),               dplyr = full_join(df1, df2, by = "x"),               DT = merge(dt1, dt2, by = "x", all = TRUE)) -> mb$fulllapply(mb, print) -> nul

#10楼

对于左连接的基数为0..*:0..1或右连接的基数为0..1:0..*情况,可以从连接器中就地分配单边列( 0..1表)直接添加到连接对象( 0..*表)上,从而避免创建全新的数据表。 这需要将参与者的键列匹配到参与者中,并相应地索引并排序参与者的行以进行分配。

如果键是单个列,则可以使用单个调用进行匹配。 我将在此答案中介绍这种情况。

这是一个基于OP的示例,除了我向df2添加了额外的一行,其ID为7,以测试连接器中不匹配键的情况。 这实际上是df1df2

df1 <- data.frame(CustomerId=1:6,Product=c(rep('Toaster',3L),rep('Radio',3L)));df2 <- data.frame(CustomerId=c(2L,4L,6L,7L),State=c(rep('Alabama',2L),'Ohio','Texas'));df1[names(df2)[-1L]] <- df2[match(df1[,1L],df2[,1L]),-1L];df1;##   CustomerId Product   State## 1          1 Toaster    
## 2 2 Toaster Alabama## 3 3 Toaster
## 4 4 Radio Alabama## 5 5 Radio
## 6 6 Radio Ohio

在上面,我对键列是两个输入表的第一列的假设进行了硬编码。 我认为,通常来说,这不是一个不合理的假设,因为如果您的data.frame具有键列,那么如果没有将它设置为data.frame的第一列,那将很奇怪。一开始。 而且,您可以随时对列进行重新排序。 这种假设的一个有益结果是,尽管我认为只是将一个假设替换为另一个假设,但是不必对键列的名称进行硬编码。 简洁是整数索引以及速度的另一个优点。 在下面的基准测试中,我将更改实现以使用字符串名称索引来匹配竞争的实现。

我认为,如果要对单个大表保留多个表,这是一个特别合适的解决方案。 对于每个合并重复地重建整个表将是不必要且效率低下的。

另一方面,如果出于任何原因需要参加者通过此操作保持不变,则不能使用此解决方案,因为它直接修改了参加者。 尽管在那种情况下,您可以简单地制作副本并在副本上执行就地分配。


附带说明一下,我简要研究了多列键的可能匹配解决方案。 不幸的是,我找到的唯一匹配的解决方案是:

  • 无效的串联。 例如match(interaction(df1$a,df1$b),interaction(df2$a,df2$b))或与paste()相同的想法。
  • 低效的笛卡尔连词,例如outer(df1$a,df2$a,`==`) & outer(df1$b,df2$b,`==`)
  • base R merge()和等效的基于包的合并函数,它们始终分配一个新表以返回合并的结果,因此不适合基于就地分配的解决方案。

例如,请参阅 , ,以及我最初提出就地解决方案问题的重复


标杆管理

我决定做自己的基准测试,以了解就地分配方法与该问题中提供的其他解决方案的比较。

测试代码:

library(microbenchmark);library(data.table);library(sqldf);library(plyr);library(dplyr);solSpecs <- list(    merge=list(testFuncs=list(        inner=function(df1,df2,key) merge(df1,df2,key),        left =function(df1,df2,key) merge(df1,df2,key,all.x=T),        right=function(df1,df2,key) merge(df1,df2,key,all.y=T),        full =function(df1,df2,key) merge(df1,df2,key,all=T)    )),    data.table.unkeyed=list(argSpec='data.table.unkeyed',testFuncs=list(        inner=function(dt1,dt2,key) dt1[dt2,on=key,nomatch=0L,allow.cartesian=T],        left =function(dt1,dt2,key) dt2[dt1,on=key,allow.cartesian=T],        right=function(dt1,dt2,key) dt1[dt2,on=key,allow.cartesian=T],        full =function(dt1,dt2,key) merge(dt1,dt2,key,all=T,allow.cartesian=T) ## calls merge.data.table()    )),    data.table.keyed=list(argSpec='data.table.keyed',testFuncs=list(        inner=function(dt1,dt2) dt1[dt2,nomatch=0L,allow.cartesian=T],        left =function(dt1,dt2) dt2[dt1,allow.cartesian=T],        right=function(dt1,dt2) dt1[dt2,allow.cartesian=T],        full =function(dt1,dt2) merge(dt1,dt2,all=T,allow.cartesian=T) ## calls merge.data.table()    )),    sqldf.unindexed=list(testFuncs=list( ## note: must pass connection=NULL to avoid running against the live DB connection, which would result in collisions with the residual tables from the last query upload        inner=function(df1,df2,key) sqldf(paste0('select * from df1 inner join df2 using(',paste(collapse=',',key),')'),connection=NULL),        left =function(df1,df2,key) sqldf(paste0('select * from df1 left join df2 using(',paste(collapse=',',key),')'),connection=NULL),        right=function(df1,df2,key) sqldf(paste0('select * from df2 left join df1 using(',paste(collapse=',',key),')'),connection=NULL) ## can't do right join proper, not yet supported; inverted left join is equivalent        ##full =function(df1,df2,key) sqldf(paste0('select * from df1 full join df2 using(',paste(collapse=',',key),')'),connection=NULL) ## can't do full join proper, not yet supported; possible to hack it with a union of left joins, but too unreasonable to include in testing    )),    sqldf.indexed=list(testFuncs=list( ## important: requires an active DB connection with preindexed main.df1 and main.df2 ready to go; arguments are actually ignored        inner=function(df1,df2,key) sqldf(paste0('select * from main.df1 inner join main.df2 using(',paste(collapse=',',key),')')),        left =function(df1,df2,key) sqldf(paste0('select * from main.df1 left join main.df2 using(',paste(collapse=',',key),')')),        right=function(df1,df2,key) sqldf(paste0('select * from main.df2 left join main.df1 using(',paste(collapse=',',key),')')) ## can't do right join proper, not yet supported; inverted left join is equivalent        ##full =function(df1,df2,key) sqldf(paste0('select * from main.df1 full join main.df2 using(',paste(collapse=',',key),')')) ## can't do full join proper, not yet supported; possible to hack it with a union of left joins, but too unreasonable to include in testing    )),    plyr=list(testFuncs=list(        inner=function(df1,df2,key) join(df1,df2,key,'inner'),        left =function(df1,df2,key) join(df1,df2,key,'left'),        right=function(df1,df2,key) join(df1,df2,key,'right'),        full =function(df1,df2,key) join(df1,df2,key,'full')    )),    dplyr=list(testFuncs=list(        inner=function(df1,df2,key) inner_join(df1,df2,key),        left =function(df1,df2,key) left_join(df1,df2,key),        right=function(df1,df2,key) right_join(df1,df2,key),        full =function(df1,df2,key) full_join(df1,df2,key)    )),    in.place=list(testFuncs=list(        left =function(df1,df2,key) { cns <- setdiff(names(df2),key); df1[cns] <- df2[match(df1[,key],df2[,key]),cns]; df1; },        right=function(df1,df2,key) { cns <- setdiff(names(df1),key); df2[cns] <- df1[match(df2[,key],df1[,key]),cns]; df2; }    )));getSolTypes <- function() names(solSpecs);getJoinTypes <- function() unique(unlist(lapply(solSpecs,function(x) names(x$testFuncs))));getArgSpec <- function(argSpecs,key=NULL) if (is.null(key)) argSpecs$default else argSpecs[[key]];initSqldf <- function() {    sqldf(); ## creates sqlite connection on first run, cleans up and closes existing connection otherwise    if (exists('sqldfInitFlag',envir=globalenv(),inherits=F) && sqldfInitFlag) { ## false only on first run        sqldf(); ## creates a new connection    } else {        assign('sqldfInitFlag',T,envir=globalenv()); ## set to true for the one and only time    }; ## end if    invisible();}; ## end initSqldf()setUpBenchmarkCall <- function(argSpecs,joinType,solTypes=getSolTypes(),env=parent.frame()) {    ## builds and returns a list of expressions suitable for passing to the list argument of microbenchmark(), and assigns variables to resolve symbol references in those expressions    callExpressions <- list();    nms <- character();    for (solType in solTypes) {        testFunc <- solSpecs[[solType]]$testFuncs[[joinType]];        if (is.null(testFunc)) next; ## this join type is not defined for this solution type        testFuncName <- paste0('tf.',solType);        assign(testFuncName,testFunc,envir=env);        argSpecKey <- solSpecs[[solType]]$argSpec;        argSpec <- getArgSpec(argSpecs,argSpecKey);        argList <- setNames(nm=names(argSpec$args),vector('list',length(argSpec$args)));        for (i in seq_along(argSpec$args)) {            argName <- paste0('tfa.',argSpecKey,i);            assign(argName,argSpec$args[[i]],envir=env);            argList[[i]] <- if (i%in%argSpec$copySpec) call('copy',as.symbol(argName)) else as.symbol(argName);        }; ## end for        callExpressions[[length(callExpressions)+1L]] <- do.call(call,c(list(testFuncName),argList),quote=T);        nms[length(nms)+1L] <- solType;    }; ## end for    names(callExpressions) <- nms;    callExpressions;}; ## end setUpBenchmarkCall()harmonize <- function(res) {    res <- as.data.frame(res); ## coerce to data.frame    for (ci in which(sapply(res,is.factor))) res[[ci]] <- as.character(res[[ci]]); ## coerce factor columns to character    for (ci in which(sapply(res,is.logical))) res[[ci]] <- as.integer(res[[ci]]); ## coerce logical columns to integer (works around sqldf quirk of munging logicals to integers)    ##for (ci in which(sapply(res,inherits,'POSIXct'))) res[[ci]] <- as.double(res[[ci]]); ## coerce POSIXct columns to double (works around sqldf quirk of losing POSIXct class) ----- POSIXct doesn't work at all in sqldf.indexed    res <- res[order(names(res))]; ## order columns    res <- res[do.call(order,res),]; ## order rows    res;}; ## end harmonize()checkIdentical <- function(argSpecs,solTypes=getSolTypes()) {    for (joinType in getJoinTypes()) {        callExpressions <- setUpBenchmarkCall(argSpecs,joinType,solTypes);        if (length(callExpressions)<2L) next;        ex <- harmonize(eval(callExpressions[[1L]]));        for (i in seq(2L,len=length(callExpressions)-1L)) {            y <- harmonize(eval(callExpressions[[i]]));            if (!isTRUE(all.equal(ex,y,check.attributes=F))) {                ex <<- ex;                y <<- y;                solType <- names(callExpressions)[i];                stop(paste0('non-identical: ',solType,' ',joinType,'.'));            }; ## end if        }; ## end for    }; ## end for    invisible();}; ## end checkIdentical()testJoinType <- function(argSpecs,joinType,solTypes=getSolTypes(),metric=NULL,times=100L) {    callExpressions <- setUpBenchmarkCall(argSpecs,joinType,solTypes);    bm <- microbenchmark(list=callExpressions,times=times);    if (is.null(metric)) return(bm);    bm <- summary(bm);    res <- setNames(nm=names(callExpressions),bm[[metric]]);    attr(res,'unit') <- attr(bm,'unit');    res;}; ## end testJoinType()testAllJoinTypes <- function(argSpecs,solTypes=getSolTypes(),metric=NULL,times=100L) {    joinTypes <- getJoinTypes();    resList <- setNames(nm=joinTypes,lapply(joinTypes,function(joinType) testJoinType(argSpecs,joinType,solTypes,metric,times)));    if (is.null(metric)) return(resList);    units <- unname(unlist(lapply(resList,attr,'unit')));    res <- do.call(data.frame,c(list(join=joinTypes),setNames(nm=solTypes,rep(list(rep(NA_real_,length(joinTypes))),length(solTypes))),list(unit=units,stringsAsFactors=F)));    for (i in seq_along(resList)) res[i,match(names(resList[[i]]),names(res))] <- resList[[i]];    res;}; ## end testAllJoinTypes()testGrid <- function(makeArgSpecsFunc,sizes,overlaps,solTypes=getSolTypes(),joinTypes=getJoinTypes(),metric='median',times=100L) {    res <- expand.grid(size=sizes,overlap=overlaps,joinType=joinTypes,stringsAsFactors=F);    res[solTypes] <- NA_real_;    res$unit <- NA_character_;    for (ri in seq_len(nrow(res))) {        size <- res$size[ri];        overlap <- res$overlap[ri];        joinType <- res$joinType[ri];        argSpecs <- makeArgSpecsFunc(size,overlap);        checkIdentical(argSpecs,solTypes);        cur <- testJoinType(argSpecs,joinType,solTypes,metric,times);        res[ri,match(names(cur),names(res))] <- cur;        res$unit[ri] <- attr(cur,'unit');    }; ## end for    res;}; ## end testGrid()

这是我之前演示的基于OP的示例的基准:

## OP's example, supplemented with a non-matching row in df2argSpecs <- list(    default=list(copySpec=1:2,args=list(        df1 <- data.frame(CustomerId=1:6,Product=c(rep('Toaster',3L),rep('Radio',3L))),        df2 <- data.frame(CustomerId=c(2L,4L,6L,7L),State=c(rep('Alabama',2L),'Ohio','Texas')),        'CustomerId'    )),    data.table.unkeyed=list(copySpec=1:2,args=list(        as.data.table(df1),        as.data.table(df2),        'CustomerId'    )),    data.table.keyed=list(copySpec=1:2,args=list(        setkey(as.data.table(df1),CustomerId),        setkey(as.data.table(df2),CustomerId)    )));## prepare sqldfinitSqldf();sqldf('create index df1_key on df1(CustomerId);'); ## upload and create an sqlite index on df1sqldf('create index df2_key on df2(CustomerId);'); ## upload and create an sqlite index on df2checkIdentical(argSpecs);testAllJoinTypes(argSpecs,metric='median');##    join    merge data.table.unkeyed data.table.keyed sqldf.unindexed sqldf.indexed      plyr    dplyr in.place         unit## 1 inner  644.259           861.9345          923.516        9157.752      1580.390  959.2250 270.9190       NA microseconds## 2  left  713.539           888.0205          910.045        8820.334      1529.714  968.4195 270.9185 224.3045 microseconds## 3 right 1221.804           909.1900          923.944        8930.668      1533.135 1063.7860 269.8495 218.1035 microseconds## 4  full 1302.203          3107.5380         3184.729              NA            NA 1593.6475 270.7055       NA microseconds

在这里,我以随机输入数据为基准,尝试在两个输入表之间使用不同的比例和不同的键重叠模式。 此基准仍然仅限于单列整数键的情况。 同样,为了确保就地解决方案适用于同一张表的左右联接,所有随机测试数据都使用0..1:0..1基数。 这是通过在生成第二个data.frame的关键列时进行采样而不替换第一个data.frame的关键列来实现的。

makeArgSpecs.singleIntegerKey.optionalOneToOne <- function(size,overlap) {    com <- as.integer(size*overlap);    argSpecs <- list(        default=list(copySpec=1:2,args=list(            df1 <- data.frame(id=sample(size),y1=rnorm(size),y2=rnorm(size)),            df2 <- data.frame(id=sample(c(if (com>0L) sample(df1$id,com) else integer(),seq(size+1L,len=size-com))),y3=rnorm(size),y4=rnorm(size)),            'id'        )),        data.table.unkeyed=list(copySpec=1:2,args=list(            as.data.table(df1),            as.data.table(df2),            'id'        )),        data.table.keyed=list(copySpec=1:2,args=list(            setkey(as.data.table(df1),id),            setkey(as.data.table(df2),id)        ))    );    ## prepare sqldf    initSqldf();    sqldf('create index df1_key on df1(id);'); ## upload and create an sqlite index on df1    sqldf('create index df2_key on df2(id);'); ## upload and create an sqlite index on df2    argSpecs;}; ## end makeArgSpecs.singleIntegerKey.optionalOneToOne()## cross of various input sizes and key overlapssizes <- c(1e1L,1e3L,1e6L);overlaps <- c(0.99,0.5,0.01);system.time({ res <- testGrid(makeArgSpecs.singleIntegerKey.optionalOneToOne,sizes,overlaps); });##     user   system  elapsed## 22024.65 12308.63 34493.19

我编写了一些代码来创建上述结果的对数-对数图。 我为每个重叠百分比生成了一个单独的图。 有点混乱,但是我喜欢在同一图中表示所有解决方案类型和联接类型。

我使用样条曲线插值法显示了每个解决方案/连接类型组合的平滑曲线,并使用单独的pch符号绘制。 连接类型由pch符号捕获,内部圆点,左侧和右侧尖括号的点分别代表左和右,菱形代表完整。 解决方案类型由图例中所示的颜色捕获。

plotRes <- function(res,titleFunc,useFloor=F) {    solTypes <- setdiff(names(res),c('size','overlap','joinType','unit')); ## derive from res    normMult <- c(microseconds=1e-3,milliseconds=1); ## normalize to milliseconds    joinTypes <- getJoinTypes();    cols <- c(merge='purple',data.table.unkeyed='blue',data.table.keyed='#00DDDD',sqldf.unindexed='brown',sqldf.indexed='orange',plyr='red',dplyr='#00BB00',in.place='magenta');    pchs <- list(inner=20L,left='<',right='>',full=23L);    cexs <- c(inner=0.7,left=1,right=1,full=0.7);    NP <- 60L;    ord <- order(decreasing=T,colMeans(res[res$size==max(res$size),solTypes],na.rm=T));    ymajors <- data.frame(y=c(1,1e3),label=c('1ms','1s'),stringsAsFactors=F);    for (overlap in unique(res$overlap)) {        x1 <- res[res$overlap==overlap,];        x1[solTypes] <- x1[solTypes]*normMult[x1$unit]; x1$unit <- NULL;        xlim <- c(1e1,max(x1$size));        xticks <- 10^seq(log10(xlim[1L]),log10(xlim[2L]));        ylim <- c(1e-1,10^((if (useFloor) floor else ceiling)(log10(max(x1[solTypes],na.rm=T))))); ## use floor() to zoom in a little more, only sqldf.unindexed will break above, but xpd=NA will keep it visible        yticks <- 10^seq(log10(ylim[1L]),log10(ylim[2L]));        yticks.minor <- rep(yticks[-length(yticks)],each=9L)*1:9;        plot(NA,xlim=xlim,ylim=ylim,xaxs='i',yaxs='i',axes=F,xlab='size (rows)',ylab='time (ms)',log='xy');        abline(v=xticks,col='lightgrey');        abline(h=yticks.minor,col='lightgrey',lty=3L);        abline(h=yticks,col='lightgrey');        axis(1L,xticks,parse(text=sprintf('10^%d',as.integer(log10(xticks)))));        axis(2L,yticks,parse(text=sprintf('10^%d',as.integer(log10(yticks)))),las=1L);        axis(4L,ymajors$y,ymajors$label,las=1L,tick=F,cex.axis=0.7,hadj=0.5);        for (joinType in rev(joinTypes)) { ## reverse to draw full first, since it's larger and would be more obtrusive if drawn last            x2 <- x1[x1$joinType==joinType,];            for (solType in solTypes) {                if (any(!is.na(x2[[solType]]))) {                    xy <- spline(x2$size,x2[[solType]],xout=10^(seq(log10(x2$size[1L]),log10(x2$size[nrow(x2)]),len=NP)));                    points(xy$x,xy$y,pch=pchs[[joinType]],col=cols[solType],cex=cexs[joinType],xpd=NA);                }; ## end if            }; ## end for        }; ## end for        ## custom legend        ## due to logarithmic skew, must do all distance calcs in inches, and convert to user coords afterward        ## the bottom-left corner of the legend will be defined in normalized figure coords, although we can convert to inches immediately        leg.cex <- 0.7;        leg.x.in <- grconvertX(0.275,'nfc','in');        leg.y.in <- grconvertY(0.6,'nfc','in');        leg.x.user <- grconvertX(leg.x.in,'in');        leg.y.user <- grconvertY(leg.y.in,'in');        leg.outpad.w.in <- 0.1;        leg.outpad.h.in <- 0.1;        leg.midpad.w.in <- 0.1;        leg.midpad.h.in <- 0.1;        leg.sol.w.in <- max(strwidth(solTypes,'in',leg.cex));        leg.sol.h.in <- max(strheight(solTypes,'in',leg.cex))*1.5; ## multiplication factor for greater line height        leg.join.w.in <- max(strheight(joinTypes,'in',leg.cex))*1.5; ## ditto        leg.join.h.in <- max(strwidth(joinTypes,'in',leg.cex));        leg.main.w.in <- leg.join.w.in*length(joinTypes);        leg.main.h.in <- leg.sol.h.in*length(solTypes);        leg.x2.user <- grconvertX(leg.x.in+leg.outpad.w.in*2+leg.main.w.in+leg.midpad.w.in+leg.sol.w.in,'in');        leg.y2.user <- grconvertY(leg.y.in+leg.outpad.h.in*2+leg.main.h.in+leg.midpad.h.in+leg.join.h.in,'in');        leg.cols.x.user <- grconvertX(leg.x.in+leg.outpad.w.in+leg.join.w.in*(0.5+seq(0L,length(joinTypes)-1L)),'in');        leg.lines.y.user <- grconvertY(leg.y.in+leg.outpad.h.in+leg.main.h.in-leg.sol.h.in*(0.5+seq(0L,length(solTypes)-1L)),'in');        leg.sol.x.user <- grconvertX(leg.x.in+leg.outpad.w.in+leg.main.w.in+leg.midpad.w.in,'in');        leg.join.y.user <- grconvertY(leg.y.in+leg.outpad.h.in+leg.main.h.in+leg.midpad.h.in,'in');        rect(leg.x.user,leg.y.user,leg.x2.user,leg.y2.user,col='white');        text(leg.sol.x.user,leg.lines.y.user,solTypes[ord],cex=leg.cex,pos=4L,offset=0);        text(leg.cols.x.user,leg.join.y.user,joinTypes,cex=leg.cex,pos=4L,offset=0,srt=90); ## srt rotation applies *after* pos/offset positioning        for (i in seq_along(joinTypes)) {            joinType <- joinTypes[i];            points(rep(leg.cols.x.user[i],length(solTypes)),ifelse(colSums(!is.na(x1[x1$joinType==joinType,solTypes[ord]]))==0L,NA,leg.lines.y.user),pch=pchs[[joinType]],col=cols[solTypes[ord]]);        }; ## end for        title(titleFunc(overlap));        readline(sprintf('overlap %.02f',overlap));    }; ## end for}; ## end plotRes()titleFunc <- function(overlap) sprintf('R merge solutions: single-column integer key, 0..1:0..1 cardinality, %d%% overlap',as.integer(overlap*100));plotRes(res,titleFunc,T);


关于键列的数量和类型以及基数,这是第二个更大规模的基准测试。 对于此基准测试,我使用三个关键列:一个字符,一个整数和一个逻辑,对基数没有限制(即0..*:0..* )。 (通常,由于浮点比较的复杂性,不建议使用双精度或复数值来定义键列,并且基本上没有人使用原始类型,键列的使用量少得多,因此我没有在键中包含这些类型另外,为了提供信息,我最初尝试通过包含POSIXct键列来使用四个键列,但是POSIXct类型由于某种原因在sqldf.indexed解决方案中不能很好地发挥作用,这可能是由于浮点比较异常,所以我将其删除。)

makeArgSpecs.assortedKey.optionalManyToMany <- function(size,overlap,uniquePct=75) {    ## number of unique keys in df1    u1Size <- as.integer(size*uniquePct/100);    ## (roughly) divide u1Size into bases, so we can use expand.grid() to produce the required number of unique key values with repetitions within individual key columns    ## use ceiling() to ensure we cover u1Size; will truncate afterward    u1SizePerKeyColumn <- as.integer(ceiling(u1Size^(1/3)));    ## generate the unique key values for df1    keys1 <- expand.grid(stringsAsFactors=F,        idCharacter=replicate(u1SizePerKeyColumn,paste(collapse='',sample(letters,sample(4:12,1L),T))),        idInteger=sample(u1SizePerKeyColumn),        idLogical=sample(c(F,T),u1SizePerKeyColumn,T)        ##idPOSIXct=as.POSIXct('2016-01-01 00:00:00','UTC')+sample(u1SizePerKeyColumn)    )[seq_len(u1Size),];    ## rbind some repetitions of the unique keys; this will prepare one side of the many-to-many relationship    ## also scramble the order afterward    keys1 <- rbind(keys1,keys1[sample(nrow(keys1),size-u1Size,T),])[sample(size),];    ## common and unilateral key counts    com <- as.integer(size*overlap);    uni <- size-com;    ## generate some unilateral keys for df2 by synthesizing outside of the idInteger range of df1    keys2 <- data.frame(stringsAsFactors=F,        idCharacter=replicate(uni,paste(collapse='',sample(letters,sample(4:12,1L),T))),        idInteger=u1SizePerKeyColumn+sample(uni),        idLogical=sample(c(F,T),uni,T)        ##idPOSIXct=as.POSIXct('2016-01-01 00:00:00','UTC')+u1SizePerKeyColumn+sample(uni)    );    ## rbind random keys from df1; this will complete the many-to-many relationship    ## also scramble the order afterward    keys2 <- rbind(keys2,keys1[sample(nrow(keys1),com,T),])[sample(size),];    ##keyNames <- c('idCharacter','idInteger','idLogical','idPOSIXct');    keyNames <- c('idCharacter','idInteger','idLogical');    ## note: was going to use raw and complex type for two of the non-key columns, but data.table doesn't seem to fully support them    argSpecs <- list(        default=list(copySpec=1:2,args=list(            df1 <- cbind(stringsAsFactors=F,keys1,y1=sample(c(F,T),size,T),y2=sample(size),y3=rnorm(size),y4=replicate(size,paste(collapse='',sample(letters,sample(4:12,1L),T)))),            df2 <- cbind(stringsAsFactors=F,keys2,y5=sample(c(F,T),size,T),y6=sample(size),y7=rnorm(size),y8=replicate(size,paste(collapse='',sample(letters,sample(4:12,1L),T)))),            keyNames        )),        data.table.unkeyed=list(copySpec=1:2,args=list(            as.data.table(df1),            as.data.table(df2),            keyNames        )),        data.table.keyed=list(copySpec=1:2,args=list(            setkeyv(as.data.table(df1),keyNames),            setkeyv(as.data.table(df2),keyNames)        ))    );    ## prepare sqldf    initSqldf();    sqldf(paste0('create index df1_key on df1(',paste(collapse=',',keyNames),');')); ## upload and create an sqlite index on df1    sqldf(paste0('create index df2_key on df2(',paste(collapse=',',keyNames),');')); ## upload and create an sqlite index on df2    argSpecs;}; ## end makeArgSpecs.assortedKey.optionalManyToMany()sizes <- c(1e1L,1e3L,1e5L); ## 1e5L instead of 1e6L to respect more heavy-duty inputsoverlaps <- c(0.99,0.5,0.01);solTypes <- setdiff(getSolTypes(),'in.place');system.time({ res <- testGrid(makeArgSpecs.assortedKey.optionalManyToMany,sizes,overlaps,solTypes); });##     user   system  elapsed## 38895.50   784.19 39745.53

使用上面给出的相同绘图代码生成的绘图:

titleFunc <- function(overlap) sprintf('R merge solutions: character/integer/logical key, 0..*:0..* cardinality, %d%% overlap',as.integer(overlap*100));plotRes(res,titleFunc,F);


#11楼

有关所有列的内部连接,你也可以使用fintersectdata.table -package或intersectdplyr -package作为替代merge不指定by -columns。 这将使两个数据帧之间的行相等:

merge(df1, df2)#   V1 V2# 1  B  2# 2  C  3dplyr::intersect(df1, df2)#   V1 V2# 1  B  2# 2  C  3data.table::fintersect(setDT(df1), setDT(df2))#    V1 V2# 1:  B  2# 2:  C  3

示例数据:

df1 <- data.frame(V1 = LETTERS[1:4], V2 = 1:4)df2 <- data.frame(V1 = LETTERS[2:3], V2 = 2:3)

#12楼

更新联接。 另一种重要的SQL风格的联接是“ 联接”,其中使用另一个表更新(或创建)一个表中的列。

修改OP的示例表...

sales = data.frame(  CustomerId = c(1, 1, 1, 3, 4, 6),   Year = 2000:2005,  Product = c(rep("Toaster", 3), rep("Radio", 3)))cust = data.frame(  CustomerId = c(1, 1, 4, 6),   Year = c(2001L, 2002L, 2002L, 2002L),  State = state.name[1:4])sales# CustomerId Year Product#          1 2000 Toaster#          1 2001 Toaster#          1 2002 Toaster#          3 2003   Radio#          4 2004   Radio#          6 2005   Radiocust# CustomerId Year    State#          1 2001  Alabama#          1 2002   Alaska#          4 2002  Arizona#          6 2002 Arkansas

假设我们想将客户状态从cust添加到custsales ,而忽略year列。 使用基数R,我们可以标识匹配的行,然后将值复制到:

sales$State <- cust$State[ match(sales$CustomerId, cust$CustomerId) ]# CustomerId Year Product    State#          1 2000 Toaster  Alabama#          1 2001 Toaster  Alabama#          1 2002 Toaster  Alabama#          3 2003   Radio     
# 4 2004 Radio Arizona# 6 2005 Radio Arkansas# cleanup for the next examplesales$State <- NULL

如此处所示, match从客户表match选择第一个匹配行。


更新具有多个列的联接。 当我们仅在单个列上联接并且对第一个匹配感到满意时,上述方法效果很好。 假设我们希望客户表中的度量年份与销售年份相匹配。

正如@bgoldst的答案所提到的,在这种情况下,可以选择与interaction match 。 更直接地说,可以使用data.table:

library(data.table)setDT(sales); setDT(cust)sales[, State := cust[sales, on=.(CustomerId, Year), x.State]]#    CustomerId Year Product   State# 1:          1 2000 Toaster    
# 2: 1 2001 Toaster Alabama# 3: 1 2002 Toaster Alaska# 4: 3 2003 Radio
# 5: 4 2004 Radio
# 6: 6 2005 Radio
# cleanup for next examplesales[, State := NULL]

滚动更新联接。 或者,我们可能希望采用在以下位置找到客户的最新状态:

sales[, State := cust[sales, on=.(CustomerId, Year), roll=TRUE, x.State]]#    CustomerId Year Product    State# 1:          1 2000 Toaster     
# 2: 1 2001 Toaster Alabama# 3: 1 2002 Toaster Alaska# 4: 3 2003 Radio
# 5: 4 2004 Radio Arizona# 6: 6 2005 Radio Arkansas

最重要的三个示例着重于创建/添加新列。 有关更新/修改现有列的示例,请参见 。


#13楼

有一个内部联接的data.table方法,这种方法非常节省时间和内存(对于某些较大的data.frames是必需的):

library(data.table)dt1 <- data.table(df1, key = "CustomerId") dt2 <- data.table(df2, key = "CustomerId")joined.dt1.dt.2 <- dt1[dt2]

merge也可以在data.tables上工作(因为它是通用的,并调用merge.data.table

merge(dt1, dt2)

在stackoverflow上记录的data.table:

另一个选择是在软件包中找到的join函数

library(plyr)join(df1, df2,     type = "inner")#   CustomerId Product   State# 1          2 Toaster Alabama# 2          4   Radio Alabama# 3          6   Radio    Ohio

type选项: innerleftrightfull

From ?join :与merge不同,无论使用哪种连接类型,[ join ]都会保留x的顺序。

转载地址:http://fxogj.baihongyu.com/

你可能感兴趣的文章
肝!分享两本高质量网络/算法书籍,进大厂必备!
查看>>
建表参数(pctfree,IniTrans,maxtrans)含义
查看>>
springBoot官方入门篇一 引入依赖并运行
查看>>
java大牛25点
查看>>
LSTM 讲解
查看>>
SpringBoot中启动的端口与设置的端口不一致
查看>>
Lua 元表及元方法
查看>>
学习日记03
查看>>
学习日记04
查看>>
js自定义数据顺序进行升序或者降序排序
查看>>
【零】简单数仓框架优化、配置及基准测试
查看>>
Sqoop的安装及测试
查看>>
Kylin的简单使用
查看>>
Presto的概念和安装使用
查看>>
Druid的Web页面使用
查看>>
Scala-HelloWorld
查看>>
Scala-IDEA中环境部署
查看>>
Scala-HelloWorld解析
查看>>
Scala-变量和数据类型
查看>>
Scala-流程控制
查看>>